The Cooper Union
Department of Mathematics
SYLLABUS

MA111 (4 cr.) Calculus I
Text: Thomas' Calculus, Weir, Hass
Twelfth Edition,
Pearson / Addison-Wesley, 2010.

1. Real numbers and the real line (A.1, H.A.: 1-4, 6-8, 10-16, 18-22, 27). Functions and their graphs (1.1, H.A.: $1-12,14,15,17,20,22,25,29,35,37-39,47,48,50-55$, 72). Combining functions; shifting and scaling graphs (1.2, H.A.: 1-5, 7, 9, 12, 17, $23,25,41,51,63,67,77,85)$. Trigonometric functions (1.3, H.A.: 4, 8, 13, 14, 16, $18,19,21,29,30,32,39,41,54)$.
2. Rates of change and tangents to curves (2.1, H.A.: none). Limit of a function and limit laws (2.2, H.A.: $2,11-13,15-19,21,33-35,37,38,40,52,60,75)$. The precise definition of a limit (2.3, H.A.: $26,36,37,39,44,49,54,56$). One-sided limits (2.4, H.A.: $1,5,7,11,18-21,25,30,31,42,46)$.
3. Continuity (2.5, H.A.: 1-9, 13, 16-21, 29, $37,41,52,59,62,65$). Limits involving infinity; asymptotes of graphs (2.6, H.A.: 1, 3-7, 9-11, 13-15, 18-21, 31, 35-39, $41-47,55,67,72,77,81,83,92,101)$. Oblique asymptotes (general case).
4. Tangents and the derivative at a point (3.1, H.A.: 7, 13, 21, 23, 27, 33, 34, 36). The derivative as a function (3.2, H.A.: $3,9,15,21,24,25,27-30,32,37,41,42,44,45$, $47,54,58$). Differentiation rules (3.3, H.A.: $1-3,5,8,9,11,17-21,23,29,33,43,47$, $56,65)$. The derivative as a rate of change (3.4, H.A.: $1,3-7,15,22,23$).
5. Derivatives of trigonometric functions (3.5, H.A.: $1-5,15,19,33,35,47,49,54,59$, 66). The chain rule (3.6, H.A.: $1,3,5-8,10,11,13-23,25-27,29,31-34,36-39,61$, $66,71,83,88,89$). Implicit differentiation (3.7, H.A.: 3, 7, 21, $23,31,35,44,47$). Related rates (3.8, Н.A.: $1,7,9,11,13,21,23,32,34,42$).
6. Linearization and differentials (3.9, H.A.: $3,8,17-21,23,25,26,28,29,31,33,35-37$, $44,48,54 \mathrm{ab})$. Extreme values of functions (4.1, H.A.: 1-14, 20, 23, 27, 29, 35, 45, 51, $61,63,70,71,75,76)$. The mean value theorem (4.2, H.A.: $1,5,7,9,17,26,28,47$, $59,64,67$). Monotonic functions and the first derivative test (4.3, H.A.: $1,3,5,17$, $23,25-27,29,31,33,63,69,70)$.
7. Inverse functions and their derivatives (7.1, H.A.: $1,3,5,11-15,22,27,31,38,51,53$, $57,58$). Inverse trigonometric functions (7.6, H.A.: $1,3,11,13,15,23,41,107,116)$. L'Hôpital's rule I (basic indeterminate forms and the Cauchy mean value theorem) (7.5, H.A.: 4, 7-9, 11-17, 19, 23, 25, 35, 47, 68, 75). Concavity and curve sketching (4.4, H.A.: $1-8,10,11,19,23,27,54,93,94,102,112$).
8. Applied optimization (4.5, H.A.: $1,3,7,15,22,24,25,38,61,63)$. Newton's method (4.6, H.A.: 3, 5, 8, 21, 24). Antiderivatives (4.7, H.A.: 1, 5, 9, 15, 21, 31, 47, 57, 63, $67,71,83,94)$. Area and estimating with finite sums (5.1, H.A.: 4, 17).
9. Sigma notation and limits of finite sums (5.2, H.A.: $1-19,21-23,25,33,39)$. The definite integral (5.3, Н.А.: $5,9,15,18,19,21-23,26,27,41-45,48,49,53,59,71$, $73-75,81,88)$. The fundamental theorem of calculus (5.4, H.A.: 1-41, 47, 54, 55, 64, 65).
10. Indefinite integrals and the substitution method (5.5, H.A.: $1-4,6-11,13,15-19,21-$ $27,29-32,34,35,37,38,40-47,49,51,55,62,63)$. Substitution and area between curves (5.6, H.A.: $1-8,10-13,15,17,18,20,21,24,25,29,35,43,59,63,75,79$, 81-83, 86-88, 90a). Natural logarithms (7.2, H.A.: 1, 4-27, 36-39, 42-47, 49, 51-53, $65,67,70,81,84$). Exponential functions (7.3, H.A.: 1, 5, 17, 23, 27-29, 32, 34, 35, $37,39,42-45,47-51,57,71,77,87,91,105,109,115,119,121,135 \mathrm{a}, 136 ;$ p.432, 123).
11. Exponential change and separable differential equations (7.4, H.A.: 1-7, 9-11, 28, 39, 44). L'Hôpital's rule II (exponential indeterminate forms) (7.5, H.A.: 51-57, 61, 71, $77,80,86,88)$.
12. Hyperbolic functions (7.7, H.A.: 1, 5, 11-13, 15-17, 19, 21, 41, 44, 45, 77, 86). Relative rates of growth (7.8, H.A.: 2, 3, 6-9, 14, 18, 20, 22). Integration by parts (8.1, Н.A.: $1,3,5,6,8-13,15,18,19,21,24-37,39-47,49,50,51 \mathrm{a}, 61,65,66,68)$. Trigonometric integrals (8.2, H.A.: $1-6,8,10,12-15,18-40,42-49,51,62,72$).
13. Trigonometric substitutions (8.3, H.A.: $1-7,9,12-26,28,29,31-49,57,58)$. Integration of rational functions by partial fractions (8.4, H.A.: $1-7,11,15,17,21,29,33$, 41,51). Integral tables and computer algebra systems (8.5, H.A.: 7, 28, 37, 44, 56).
14. The substitution $z=\tan (x / 2)$ (p.494, H.A.: 41-47). Numerical integration (8.6, H.A.: 3, 9, 25, 28, 38). Improper integrals (8.7, H.A.: $1-5,7-11,13-19,21-29,32-63$, $65,66,75 \mathrm{~b})$.

Grading Policy:

Assessment	Course content (see schedule above)	Weight
Exam 1	through sec. 2.6 \& oblique asymptotes	13%
Exam 2	sec. $3.1-4.7$, incl. curve sketching	22%
Exam 3	sec. $5.1-7.8$	30%
Final Exam	ch. 8 AND cumulative	35%

